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LETTER TO THE EDITOR 

Towards describing the strong-coupling regime of the 
Kardar-Parisi-Zhang (KPZ) equation 

Semjon Stepanowt 
M~rin-Luther-Univers,t=t Halle-Wittenberg, Fachbereich Physik. 
Friedemann-Bach-Platz 6. D-06108 HalldSaale. Germany? 

Received 18 September 1995 

Abstrad. A novel approach which enables one to treat the strong-caupling regime of the 
KPZ equation is proposed. The essence of the method consists in understanding the reason 
for the increase of the effective coupling constanl under renormaliulion and incorporating this 
information into the renormalization group (RG) procedure. By using this generalized RO 
method I computed the critical exponents at the strong-coupling fixed point of the KPZ equation 
for space dimensions 2 < d < 4: the roughness exponent < = (4 - d ) / 4  and the dynamic 
exponent z = (4 + d)/4.  

The scale invariance in different topics in physics-such as the physics of phase 
transitions [l] ,  quantum field theory and the physics of elementary particles [Z] and 
dynamical phenomena far from equilibrium [3]-is usually described by using the 
renormalization group (RG) method. However, there are examples were the RG methods 
fails. The most prominent example is probably the KPZ equation introduced and studied 
by Kardar, Parisi, and Zhang [4]: 

(1) 

where h(z .  t )  is a single-valued function which describes the height profile above a basal d- 
dimensional substrate x in the comoving coordinate system, A is responsible for the lateral 
growth, uo is the surface tension, and the noise q(x, t )  has a Gaussian distribution with 
07(zr 0) = 0, and 

(2) 

Equation (1) is now widely accepted as describing growth processes such as the Eden 
model process and growth by ballistic deposition. The KPZ equation is also related to 
randomly stirred fluids (Burgers' equation [SI), dissipative transport in the driven-diffusion 
equation [6], the directed polymer problem in disordered media [7], and the behaviour of 
flux lines in superconductors [SI. 

The one-loop renormalization group (RG) flow equations associated with equation (1) 
can be obtained in a standard manner. The solution of the flow equations is 

Y'lB 

ah A - = uoV2h + - (Vh) '  + IJ (Z .  i) 
at 2 

(~(1. i)q(x', t')) = ~ D ~ s ~ ( x  - z') s(t - t ' ) .  

1 
U = "(1 + ;goBI') 

D = Do( 1 + :g0+9Iz) 

(3) 

(4) 
Y D I B  
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where B = 2-d and go = K ~ D o A * / v ~  is the bare coupling constant. The structure factors yx. 
yD. and @ is the coefficient in the expansion of the Gell-Mann-Low function in powers 
of the coupling constant) are computed up to the one-loop order as yr = (2 - d) / (4d) ,  
y~ = l/4, and /3 = (3 - 2d)/(2d) .  In one dimension, the factor @ is positive, so the 
effective coupling constant glE has a fixed point, which leads to the scaling behaviour of 
the effective quantities U and D. The situation drastically changes in the vicinity of two 
dimensions. In this case @ becomes negative, meaning that the effective coupling constant 
increases under renormalization and there is no fixed point of the effective coupling constant. 
However, numerical simulation [IO] shows that the interface is rough at d = 2, Above two 
dimensions the interface becomes rough when the coupling go exceeds some critical value 
g,. So fat, the theory fails to treat this situation. The general opinion is that the strong- 
coupling fixed point is not obtainable via perturbation theory. 

In this letter I will show that the information available from perturbation theory 
(equations (3)-(5)), combined with an understanding of the reason for the increase of the 
effective coupling constant under renormalization and incorporating this information into the 
RG procedure, will enable us to describe the strong-coupling regime of the KPZ equation 
and in this way compute the critical exponents of the KPZ equation in the strong-coupling 
regime. 

The essential point of the present approach consists in understanding the reason for 
the increase of the effective coupling constant under renormalization and incorporating 
this information into the renormalization group procedure. Let us first summarize the main 
features of the RG method. The method is based on a consecutive integrating out of degrees 
of freedom along the length scale (shell integration). The integrated degrees of freedom 
cause renormalizing of the coefficients of the microscopic (bare) model. The RG is expected 
to be successful if the physics on a macroscopic scale can be understood in terms of the 
bare equation with renormalized coefficients, which depend on the length scale via power 
laws. The method definitely fails if this is not the case and physics on the macroscopic 
scale cannot be described in terms of the bare model i.e. the physics on the macroscopic 
scale goes beyond the form of the microscopic model. I conclude that, in such cases, the 
increase of the coupling constant is a 'response' of the system on the shell integration. This 
conclusion is supported by following two examples. The first one concerns the dynamics 
of depinning of interfaces and charge density waves (CDW) in disordered media, which 
was recently successfully treated i n  [ 1 I ]  (CDW) and [U] (interfaces). The interface will be 
pinned if the driving force F becomes lower than some threshold value F,. The microscopic 
equation (see [ 121). however, does not contain the threshold force. Thus, F, is not present 
in the bare model, but it is an essential feature of the physics on a macroscopic scale. I 
interpret this circumstance as being responsible for an increase of the coupling constant 
under renormalization! The success in solving the depinning problem is connected with 
the fact that in the depinning problem the renormalization procedure does not reduce to the 
renormalization of one coupling constant (the strength of the disorder) as is usually the case, 
but includes the renormalization of the shape of the disorder conelator, which is described 
by the functional renormalization group [ l l ,  121. It appears that taking into account the 
possibility of the appearance of the threshold force Fc in solving the fixed-point equation of 
the functional renormalization group leads to the fixed point, generating critical behaviour 
of the interface in the vicinity of the threshold. 

The second example concerns the bound-state problem of a quantum mechanical particle 
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in an attractive d-dimensional delta potential, which is equivalent to the problem of a 
localization of a flux line on a linear defect in d-dimensions and to the absorption of a 
Gaussian polymer chain on a d-dimensional delta potential. This problem can be studied 
both exactly, in terms of the well-known Green function of the problem, and by using 
the dynamical RG, which gives an increase of the effective coupling constant at d = 2. 
Comparing the one-loop RG result with the exact solution tells us ( i )  that the one-loop result 
is exact, and (ii) how to use the one-loop result to describe the physics on the macroscopic 
scale (localization) [13]. It appears that in this case the mechanism for increasing the 
effective coupling constant under renormalization is due to the fact that for d > 2 a finite 
strength of attraction is necessary for the appearance of a bound state. 

Returning to the consideration of the KPZ equation, I assume that the increase of the 
coupling constant at d < 2 is a signal that for d > 2 a finite strength of the coupling 
constant is necessary in order that the interface will become rough. If so, it is reasonable 
to incorporate the possibility of generating a threshold of the coupling constant into the RG 
procedure, and hope that this will result in the appearance of a fixed point-fhe strong- 
coupling fired point. 

It seems that there is a similarity between the mechanism involved in an increase of 
the effective coupling constant in the localization problem and that in the KPZ equation. 
The following arguments give support for this similarity: (i) in both cases there is a finite 
threshold of the coupling constant for d > 2, (ii) there is an analogy between the bound- 
state problem and the KPZ equation mapped to the directed polymer problem [7]; (iii) 
there are no higher-order corrections to the Gell-Mann-Low beta function for both the KPZ 
equation [91 and the localization problem [13]. 

Let us now start to analyse the problem. The critical dimension d = 2 plays a crucial 
role in the present analysis. From equation (3) it follows that in the vicinity of d = 2 only 
the strength of the thermal noise D renormalizes. In the vicinity of d = 2, equation (4) can 
be written as 

D = Do 1 - -gofl'Ic (6) 

where j? = 1/4 is the value of the factor fl  taken at d = 2 with the sign negative. The 
crucial point of the present approach is to identify the length 1 in equation (6) as 

(7) 

( : >-,,',. 
I = ( u ; y - l  + t'?))-l/* 

where t is time and r, is the timescale, which will be defined below. Equation (7) does 
not contradict perturbation theory on small scales ( r - '  >> t;') and gives the system the 
possibility generating a threshold for the coupling constant at d > 2 for f-l << t;'. Inserting 
equation (7) into equation (6) gives 

The length fc is defined by demanding that the denominator in (8) behaves linearly in t- l  
for small f-'. As a result equation (8) yields for small I-' 
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where g, = ((d - 2)/p’)h‘d-2) is the threshold value of the coupling constant and h is a 
microscopic cutoff. It is supposed that in (10) for d > 2 the condition go 5 g, applies. r, 
is the timescale above which the strong-coupling regime is found. 

I now assume that equation (9) describes the strong-coupling regime and use this 
assumption to compute the critical exponents in the strong-coupling regime. Neglecting 
the prefactor in equation (9) gives 

D - t Y d B ’ ,  (11) 
In contrast to in the weak-coupling regime-where U at d = 2 does not renormalize-in 
the strong-coupling regime one cannot exclude the possibility that U may renormalize, so 
the following scaling behaviour of U is assumed: 

v N p lB’ ,  (12) 

z = 2 - yx/-/B’. (13) 

D lZYD/B’ ,  (14) 

Using the relation 1 = (ut)Il2 and equation (12), the relation between t and the spatial scale 
I becomes 1 - f ’ / ( 2 - Y , / B ’ ) ,  which gives the following relation for the dynamic exponent z: 

Inserting t - I z  into equation (1  1) gives 

The roughness exponent < is derived from the bare expression of the roughness of the 
surface with Do and WO replaced by their renormalized counterparts D and U: 

,,,2 1 2 - d ~ / ~  12-d+rvulB’-vxlP‘, 

which gives the roughness as 

To determine yx I use the scaling relation between the exponents, < + z = 2, which follows 
from the invariance of equation (1) to an infinitesimal tilting of the surface h + h + cx, 
z + x + AEZ [4], and after inserting (13) and (15) into he scaling relation I get 

Yz 2 - d + 2 Y o / B ’  - =  
B’ 3+yD/B’ ’ 

which by using yD/-/B‘ = 1 at d = 2 results in 

On using (17) and y o / T  = 1, the critical exponents are obtained from equations (13 and 
15) as 

4 - d  5 4 - d  
4 4 z 4 i - d  

(= -  @=-= -  4 f d  z = -  

I note that the exponents at d = 2 coincide with those conjectured in the original 
article by Kardar, Parisi, and Bang.  The exponents are larger than those obtained ir. 
numerical simulations [IO] and those given by analytical formulae conjectured by Wolf and 
Ken& [I41 and Kim and Kosterlitz 1151, which were obtained by using the results of 
numerical simulations. The discrepancy may be due to the fact that simulations were not 
performed in the scaling regime. The above time scale f, which the strong-coupling regime 
develops, depends on go in a nontrivial way (see equation (10)). so te can become extremely 
large, which would make it difficult to achieve the scaling regime in computer simulations. 
It is interesting to note that d = 4 is the upper critical dimension for the strong-coupling 
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regime. The same conclusion was drawn in the previous studies [9, 16]-[17]. Due to 
the fact that there are no singularities beyond the one-loop level, I expect that the critical 
exponents (18) will be exact for d 2 2. It is evident from the above consideration that 
the present method, being appropriate for the treatment of the strong-coupling regime, is 
expected to describe the exponents a t  d = 1 only approximately. 

Let us now discuss the peculiarities of the strong-coupling problem associated with 
the KPZ equation. It was argued above that there is some similarity between the strong- 
coupling regime of the KPZ equation and the bound-state problem of quantum mechanics 
but the latter is essentially a one-particle problem. The main difficulty in treating the KPZ 
equation lies in recognizing the feature of 'the one-particle problem' in the formalism of 
infinite degrees of freedom associated with the KPZ equation and in recognizing how 'the 
one-particle problem' manifests itself in the RG procedure. 

To conclude, I have proposed a novel approach enabling one to treat the swong-coupling 
regime of the KPZ equation. Although the present mechanism of treating the strong-coupling 
regime is definitely not generic for all cases were the effective coupling constant increases 
under renormalization (compare the KPZ case and interface depinning), I expect that the 
basic idea of the present work is generic and will be useful in  treating other problems in 
different topics in physics where the strong coupling is relevant. 

I acknowledge partial support from the Deutsche Forschungsgemeinschaft (SFB 262, Mainz) 
where part of this work was performed. 
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